Calculus Foundations — Lab Report

Differentiation and Integration for ENGR/Stats

Objective: Provide a rigorous yet friendly refresher on derivatives and integrals, including core rules, intuition, and worked examples for immediate course use.

Prepared by: Instructor

Date: August 2025

Objective and Theory

Objective

Review the essential calculus tools for this course: derivatives (rates of change), integrals (accumulation/area), and two key techniques (substitution, parts).

Notation

Derivative: dy/dx, f'(x), d/dx f(x). Integral: $\int f(x) dx$. Definite: $\int_a^b f(x) dx$.

Differentiation — core rules

$$\frac{d}{dx}x^n = nx^{n-1}$$
, $\frac{d}{dx}(c) = 0$, $\frac{d}{dx}(cf) = cf'$

$$\frac{d}{dx}(f+g) = f' + g', \quad \text{Product: } (uv)' = u'v + uv', \quad \text{Quotient: } (u/v)' = (u'v - uv')/v^2$$

Chain:
$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

Common:
$$\frac{d}{dx}e^{ax} = ae^{ax}$$
, $\frac{d}{dx}\ln x = 1/x$ (for $x > 0$), $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$

Integration — core rules

Find F with F' = f; then $\int f(x) dx = F(x) + C$.

$$\int x^n dx = x^{n+1}/(n+1) + C \ (n \neq -1), \ \int c \ dx = cx + C, \ \text{linearity holds}.$$

$$\int e^{ax} dx = (1/a)e^{ax} + C (a \neq 0).$$

Visual Intuition

Core Techniques

u-substitution (reverse chain rule)

Let
$$u = g(x)$$
, $du = g'(x) dx$. Then $\int f(g(x))g'(x)dx = \int f(u) du$.

Example:
$$\int 2x e^{x^2} dx$$
, take $u = x^2 \Rightarrow du = 2x dx$: $\int e^u du = e^u + C = e^{x^2} + C$.

Integration by parts

From product rule: $d(uv)/dx = u'v + uv' \Rightarrow \int u \, dv = uv - \int v \, du$.

Choose u to simplify when differentiated; choose dv easy to integrate.

Example:
$$\int ye^{-ky}dy \ (k > 0)$$
. Set $u = y$, $dv = e^{-ky}dy$

$$\Rightarrow du = dy, v = -e^{-ky}/k$$
. Then $\int ye^{-ky}dy = -ye^{-ky}/k - e^{-ky}/k^2 + C$.

Improper Integrals and Worked Examples

Improper integrals (used often in probability)

For
$$a > 0$$
: $\int_0^\infty e^{-ax} dx = 1/a$, $\int_b^\infty e^{-ax} dx = e^{-ab}/a$.

Also:
$$\int_{b}^{\infty} x e^{-ax} dx = e^{-ab} (b/a + 1/a^2).$$

Differentiation examples

$$\frac{d}{dx}(3x^4 + 2x^2 - 5) = 12x^3 + 4x$$

Product rule:
$$\frac{d}{dx}(x^2e^{2x}) = (2x + 2x^2)e^{2x}$$

Integration examples

$$\int_0^1 x^2 dx = [x^3/3]_0^1 = 1/3$$

By parts:
$$\int xe^{2x}dx = (xe^{2x})/2 - (e^{2x})/4 + C$$

Results, Discussion, and Quick Reference

Results & Discussion

You should now be able to compute core derivatives and integrals, set up definite integrals,

and use substitution and integration by parts. The figures show geometric meaning:

derivative = slope of tangent, integral = area under the curve.

Conclusion

Key formulas and ideas to remember are summarized below. Keep this page handy as a cheat sheet.

Quick Reference

$$\frac{d}{dx}x^n = nx^{n-1}, \quad \int x^n dx = x^{n+1}/(n+1) + C \ (n \neq -1)$$

$$\frac{d}{dx}e^{ax} = ae^{ax}, \quad \int e^{ax}dx = (1/a)e^{ax} + C$$

$$\frac{d}{dx}\ln x = 1/x \ (x > 0), \quad \int 1/x \ dx = \ln|x| + C$$

Integration by parts: $\int u \, dv = uv - \int v \, du$

u-substitution: with u = g(x), $\int f(g)g'dx = \int f(u)du$