Chapter 11 — Homework: Simple Linear Regression (Excel)

Use one of these two routes on the same dataset (Study Hours → Exam Score):
Prefer the one-click Excel summary? 👉 Use the ToolPak version  |  Want to see the functions behind it? 👉 Use the Functions version

Dataset — 23 students (X = Study hours, Y = Exam score)

#Hours (X)Score (Y)

Paste tip: Click cell A1 (not in edit mode), then Ctrl+V. If a column sticks together: Data → Text to Columns → Delimited → Tab/Comma.

Option A — Excel Data Analysis → Regression (ToolPak)

  1. Excel: Data tab → Data Analysis (enable “Analysis ToolPak” if you don’t see it).
  2. Choose Regression → OK.
  3. Input Y Range: B1:B24 (include header), Input X Range: A1:A24 (include header); check Labels.
  4. Output → New Worksheet Ply; optionally tick Residuals & Standardized Residuals.
  5. Click OK. You’ll get: Regression Statistics, ANOVA, and Coefficients.
Reading the ANOVA box: F tests if slope = 0; small “Significance F” ⇒ the line explains Y. Glossary: SST=Total SS, SSR=Regression/Explained SS, SSE=Error SS, MS=SS/df, and with one X, F = t(b₁)².

Option B — Excel Functions (+ scatter & trendline)

  1. Place X in A2:A24 and Y in B2:B24 (headers in A1, B1).
  2. Compute:
    =SLOPE(B2:B24, A2:A24) → b₁   |   =INTERCEPT(B2:B24, A2:A24) → b₀   |   =RSQ(B2:B24, A2:A24) → R²   |   =CORREL(A2:A24, B2:B24) → r   |   =STEYX(B2:B24, A2:A24) → typical error
  3. Insert → Scatter; add Trendline with “Display Equation” and “Display R-squared”.
  4. Add residuals column (if b₀ in E2, b₁ in E3): =B2 - ($E$2 + $E$3*A2); inspect residuals for curve/outliers.

What to submit (single PDF or DOCX)

Reminder: R² does not prove causation. Avoid extrapolating far outside the observed X-range.

Rubric (10 points)

ItemPts
ToolPak tables pasted OR Functions + chart shown2
Numbers consistent across method used (b₀, b₁, R², r, STEYX)2
Interpretation bullets (slope, intercept, R², error size)3
Forecast at x₀=10 with range (ŷ ± 2·STEYX) & in-range comment2
Residuals note (curve/outliers?)1
Instructor Key (auto-computed from this dataset) — collapse before posting

Line & Fit

ŷ = + ·X
r =   |   R² =
STEYX ≈ (points)

ANOVA / Significance

SSR = , SSE = , SST =
df = (1, , )
MSR = , MSE =
F = , p(F) =
t(b₁) = , p = (and F ≈ t²)

Forecast @ X = 10 hours

ŷ =   |   Rough range: to

© ENGR200 • Single-file, offline.