šŸ“˜ Chapter 13 Summary – Design and Analysis of Single-Factor Experiments (FYI)

šŸ”— Slides for Chapter 13

šŸ“‚ Download Chapter 13 PowerPoint (ch13.pptx)

šŸŽÆ Learning Objectives

šŸ”§ 13.1 – Designing Engineering Experiments

🧪 13.2 – Completely Randomized Single-Factor Experiment

Model:

Yij = μ + Ļ„i + εij

ANOVA Hypotheses:

F-statistic:

Fā‚€ = MSTreatments / MSError
Reject Hā‚€ if Fā‚€ > Fα, aāˆ’1, a(nāˆ’1)

ANOVA Table:

Source        | SS         | df        | MS         | F
-------------|------------|-----------|------------|-----------
Treatments    | SSTreat    | a - 1     | MSTreat    | MSTreat / MSE
Error         | SSE        | a(n - 1)  | MSE        |           
Total         | SST        | an - 1    |            |           
  

Confidence Intervals:

šŸ“Š 13.2.3 – Multiple Comparisons (Fisher's LSD)

LSD = tα/2 Ɨ √(2 Ɨ MSE / n)

šŸ“ˆ 13.2.4 – Residual Analysis

šŸ”¢ 13.2.5 – Sample Size & Power

šŸŽ² 13.3 – Random Effects Model

Variance Components:

🧱 13.4 – Randomized Complete Block Design (RCBD)

Model:

Yij = μ + Ļ„i + βj + εij

ANOVA Partition:

SST = SSTreatments + SSBlocks + SSE
  

ANOVA Table:

Source        | SS         | df           | MS         | F
-------------|------------|--------------|------------|-----------
Treatments    | SSTreat    | a - 1        | MSTreat    | MSTreat / MSE
Blocks        | SSBlocks   | b - 1        | MSBlocks   |           
Error         | SSE        | (aāˆ’1)(bāˆ’1)   | MSE        |           
Total         | SST        | ab - 1       |            |           
  

Fisher's LSD (adjusted):

LSD = tα/2, (aāˆ’1)(bāˆ’1) Ɨ √(2 Ɨ MSE / b)

šŸ“ Important Terms