📐 Core Equations with Excel Examples
  1) Set Laws & Probability Basics
  Complement: P(A′) = 1 − P(A)
  Union: P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
  Intersection: P(A ∩ B) = P(A|B) · P(B)
  All probabilities satisfy 0 ≤ P(event) ≤ 1, and total probability = 1.
  
    Excel: =1 - P(A) 
    Excel: =P(A) + P(B) - P(A_and_B) 
    Excel: =P_A_given_B * P_B
  
  2) Counting Rules
  Multiplication Rule: N = n1 × n2 × ... × nk
  Permutations: P(n,r) = n! / (n − r)!
  Combinations: C(n,r) = n! / [r!(n − r)!]
  Order matters? Use permutations. Order doesn’t matter? Use combinations.
  
    Excel: =PERMUT(n,r)
    Excel: =COMBIN(n,r)
    Excel: =FACT(n)
  
  3) Addition & Multiplication
  P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
  P(A ∩ B) = P(A|B) · P(B)
  If independent: P(A ∩ B) = P(A) · P(B)
  
    Excel: =P_A_given_B * P_B
    Excel: =P_A * P_B
  
  4) Conditional Probability
  P(A|B) = P(A ∩ B) / P(B)
  
    Excel: =P_A_and_B / P_B
  
  5) Total Probability Rule
  P(B) = Σ P(B|Ei) · P(Ei)
  
    Excel (2 scenarios): =P_B_given_E1*P_E1 + P_B_given_E2*P_E2
  
  6) Bayes’ Theorem (2-event)
  
    P(E1|B) = 
    [ P(B|E1) · P(E1) ] ÷ 
    [ P(B|E1) · P(E1) + P(B|E2) · P(E2) ]
  
  Posterior = (Likelihood × Prior) ÷ (Total Probability of Evidence)
  
    Numerator =P_B_given_E1 * P_E1
    Denominator =P_B_given_E1*P_E1 + P_B_given_E2*P_E2
    Bayes =Numerator / Denominator
  
  7) Independence
  Independent if P(A ∩ B) = P(A) · P(B)
  Equivalent: P(A|B) = P(A), and P(B|A) = P(B)
  
    Excel check:
    =IF(ABS(P_A_and_B - (P_A*P_B)) < 0.0001,"Independent","Not Independent")