Goal: Each problem is phrased in an engineering or student-life context. You must infer the correct model and inputs before computing. The solutions show: identify model → extract parameters → compute.
Excel (Microsoft 365): use POISSON.DIST
, BINOM.DIST
, NEGBINOM.DIST
. Older Excel may use legacy names like POISSON
or BINOMDIST
.
P(X=5) = e^(−3) · 3^5 / 5! = e^(−3) · 243 / 120 ≈ 0.049787068 · 2.025 = 0.10081881
P(X≤4) = 0.049787068 + 0.149361205 + 0.224041807 + 0.224041807 + 0.168031355 = 0.815263245 P(X≥5) = 1 − 0.815263245 = 0.18473676
P(0) = C(100,0)(0.02)^0(0.98)^100 = 0.13261956 P(1) = C(100,1)(0.02)^1(0.98)^99 = 0.27085420 P(2) = C(100,2)(0.02)^2(0.98)^98 = 0.27321222 Sum = 0.67668598 P(X≥3) = 1 − 0.67668598 = 0.32331402
P(0) = e^(−2) · 2^0/0! = 0.135335283 P(1) = e^(−2) · 2^1/1! = 0.270670566 P(2) = e^(−2) · 2^2/2! = 0.270670566 Sum = 0.676676415 P(X≥3) ≈ 1 − 0.676676415 = 0.32332358 (very close to the exact binomial)
P(T=4) = (1/2)^3 · (1/2) = (1/2)^4 = 0.0625
E[T] = 1 / 0.2 = 5 tries
C(6,2) = 15 p^3 = 0.4^3 = 0.064 (1-p)^4= 0.6^4 = 0.1296 P(T=7) = 15 × 0.064 × 0.1296 = 0.12441600
P(X=2) = C(15,2) · 0.1^2 · 0.9^13 = 105 · 0.01 · 0.254186582 = 0.26689591
P(X ≤ 9) = 0.24239216 (from summation / CDF)
μ = 20 × 0.4 = 8.0 σ² = 20 × 0.4 × 0.6 = 4.8
P(X=9) = e^(−9) · 9^9 / 9! = 0.0001234098 · (387,420,489 / 362,880) = 0.13175564