A count variable X that records the number of events in a fixed interval with constant average rate λ follows a Poisson(λ) distribution.
Discrete vs Continuous: For Poisson (discrete), P(X=x) is a true probability. For continuous models, the PDF f(x) is a density and probabilities are areas under the curve.
Example: 1 per 10 minutes in a 60-minute window ⇒ λ = 6. Use the buttons above to try it.
Flaws occur at 2.3 per mm. For a 5 mm piece, λ = 2.3 × 5 = 11.5.
=POISSON.DIST(10, 11.5, FALSE)
          Legacy: =POISSON(10, 11.5, FALSE)
      =1-POISSON.DIST(0, 4.6, TRUE)
          Legacy: =1-POISSON(0, 4.6, TRUE)
      Average 3 patients/hour → λ = 3 per hour.
=POISSON.DIST(5, 3, FALSE)
          Legacy: =POISSON(5, 3, FALSE)
      =POISSON.DIST(2, 3, TRUE)
          Legacy: =POISSON(2, 3, TRUE)
      Let X be the number of arrivals in one hour. If arrivals are independent and the average rate is constant, then X ~ Poisson(λ). Here the model uses λ arrivals per hour.
P(X = 5) = e^{-λ} · λ^5 / 5!
         = [e^{-λ} = …] × [λ^5 / 5! = …]
         = …
      
P(X ≤ 2) = ∑_{k=0}^2 e^{-λ} · λ^k / k!
         = e^{-λ} · (1 + λ + λ^2 / 2)
         = [sum = …] × [e^{-λ} = …]
         = …
      =POISSON.DIST(x, lambda, FALSE)=POISSON.DIST(x, lambda, TRUE)=1 - POISSON.DIST(k-1, lambda, TRUE)=POISSON.DIST(b,lambda,TRUE) - POISSON.DIST(a-1,lambda,TRUE)lambda (so =SQRT(lambda) for σ)