Chapter 3 Reference — Binomial • Geometric • Negative Binomial • Poisson

Clean PMF/CDF, calculators, and step-by-step derivations of mean and variance. Built to be a long-term study companion.

Binomial Distribution — Binomial(n, p)

Fixed number of independent trials n, success probability p each trial; X = number of successes.

PMF: P(X = k) = C(n,k) · pk · (1−p)n−k, k = 0,1,…,n
CDF: P(X ≤ k) = Σi=0..k C(n,i) pi (1−p)n−i
Mean: μ = n p   Variance: σ² = n p (1−p)

Quick calculator

Excel: PMF =BINOM.DIST(k,n,p,FALSE) · CDF =BINOM.DIST(k,n,p,TRUE) · Legacy PMF =BINOMDIST(k,n,p,FALSE)

Deriving the mean and variance

  1. Model X as a sum of n Bernoulli trials: Let X = X1 + … + Xn, where each Xi is 1 if trial i is success, else 0.
  2. Mean: E[Xi] = p, so E[X] = Σ E[Xi] = n p.
  3. Variance: Var(Xi) = p(1−p); trials are independent, so variances add: Var(X) = Σ Var(Xi) = n p (1−p).
This argument avoids heavy algebra and is the standard, clean derivation.
Geometric Distribution — Geometric(p)

Independent, identical trials with success probability p. X = number of trials until the first success (support 1,2,…).

PMF: P(X = k) = (1−p)k−1 · p, k = 1,2,…
CDF: P(X ≤ k) = 1 − (1−p)k
Mean: μ = 1/p   Variance: σ² = (1−p)/p²

Quick calculator

Excel: PMF =GEOM.DIST(k,p,FALSE) · CDF =GEOM.DIST(k,p,TRUE) · Legacy =GEOMDIST(k,p,FALSE/TRUE) · Fallback via NegBin: =NEGBINOM.DIST(k-1,1,p, FALSE/TRUE)

Deriving the mean and variance

  1. Mean E[X]: Use the series identity Σk=1..∞ k rk−1 = 1/(1−r)² for |r|<1. Here r = 1−p.
    E[X] = Σ k (1−p)k−1 p = p · Σ k rk−1 = p · 1/(1−r)² = p · 1/p² = 1/p.
  2. Variance: First get E[X²] using the identity Σ k² rk−1 = (1+r)/(1−r)³ (obtained by differentiating the geometric series twice).
    E[X²] = p · Σ k² rk−1 = p · (1+r)/(1−r)³ = p · (2−p)/p³ = (2−p)/p².
    Var(X) = E[X²] − (E[X])² = (2−p)/p² − 1/p² = (1−p)/p².
Equivalently, you can use the memoryless property to show E[X]=1/p and then compute Var(X) from series.
Negative Binomial — NegBin(r, p)

Independent, identical trials with success probability p. X = number of trials to accumulate r successes. (Geometric is r=1.)

PMF: P(X = k) = C(k−1, r−1) · (1−p)k−r · pr, k = r, r+1,…
CDF: P(X ≤ k) = Σi=r..k C(i−1,r−1) (1−p)i−r pr
Mean: μ = r/p   Variance: σ² = r(1−p)/p²

Quick calculator

Excel: PMF =NEGBINOM.DIST(k-r, r, p, FALSE) · CDF =NEGBINOM.DIST(k-r, r, p, TRUE)

Deriving the mean and variance

  1. Key idea: The total trials to get r successes equals the sum of r independent geometric waiting times (each counts trials to the next success).
  2. Mean: If G ~ Geometric(p), then E[G]=1/p. For independent G1,…,Gr, X = G1+…+GrE[X] = r · (1/p) = r/p.
  3. Variance: Var(G)=(1−p)/p² and variances add (independence), so Var(X)= r (1−p)/p².
This “sum of geometrics” view is the cleanest derivation and matches the PMF given above.
Poisson — Poisson(λ)

Counts events in a fixed interval when events occur independently at a constant average rate λ.

PMF: P(X = x) = e−λ · λx / x!, x = 0,1,2,…
CDF: P(X ≤ x) = Σk=0..x e−λ λk / k!
Mean: μ = λ   Variance: σ² = λ

Quick calculator

Excel: PMF =POISSON.DIST(k, lambda, FALSE) · CDF =POISSON.DIST(k, lambda, TRUE) · Legacy: =POISSON(k, lambda, FALSE/TRUE)

Deriving the mean and variance

  1. Mean: Start with E[X] = Σ x · e−λ λx / x!. Shift index: write x = (x−1)+1 or factor one λ:
    E[X] = e−λ Σx≥1 x λx/x! = e−λ Σx≥1 λ · λx−1/(x−1)! = λ · e−λ Σy≥0 λy/y! = λ
  2. Second factorial moment: E[X(X−1)] = e−λ Σ x(x−1) λx/x! = e−λ Σ λ² λx−2/(x−2)! = λ².
  3. Variance: E[X²] = E[X(X−1)] + E[X] = λ² + λ. Hence Var(X) = E[X²] − (E[X])² = (λ²+λ) − λ² = λ.
These index-shift tricks avoid calculus and make Poisson’s μ=σ²=λ pop right out.