📘 Homework — Uniform (continuous), Exponential, Lognormal

U1. Printer warm-up time (Uniform)

A lab printer’s warm-up time \(X\) is uniformly distributed between 20 and 40 seconds. What is \(P(X\le 30)\)?

Show Solution

Model \(X\sim \text{Unif}[a=20,\ b=40]\)

Given: a=20, b=40. Find: \(P(X\le 30)\).

Compute: CDF on [a,b] is \(F(x)=\dfrac{x-a}{b-a}\). So \(F(30)=\dfrac{30-20}{40-20}=\dfrac{10}{20}=\mathbf{0.5000}\).

=(30-20)/(40-20)

U2. Bus arrival (Uniform)

A shuttle arrives uniformly between 0 and 15 minutes after you arrive. What is \(P(5\le X\le 12)\)?

Show Solution

Model \(X\sim \text{Unif}[0,15]\)

Compute: \(P(5\le X\le 12)=\dfrac{12-5}{15-0}=\dfrac{7}{15}=\mathbf{0.4667}\).

=(12-5)/(15-0)

U3. Random page length (Uniform)

Assume page lengths \(X\) are \(\text{Unif}[280,320]\) words. Find the mean and variance.

Show Solution

Model \(X\sim \text{Unif}[a=280,\ b=320]\)

Compute: \(\operatorname{E}[X]=(a+b)/2=\mathbf{300}\). \(\operatorname{Var}(X)=(b-a)^2/12=(40^2)/12=\mathbf{133.33}\).

Mean: =(280+320)/2     Var: =(320-280)^2/12

U4. Simple density value (Uniform)

For \(X\sim \text{Unif}[2,6]\), find the PDF value \(f_X(4)\).

Show Solution

Model \(X\sim \text{Unif}[2,6]\)

Compute: PDF on [a,b] is \(f(x)=1/(b-a)=1/(6-2)=\mathbf{0.25}\).

=1/(6-2)

E1. Light bulb time-to-failure (Exponential)

Time to failure \(X\) (in years) is exponential with mean 5 years. What is the rate \(\lambda\)? What is \(P(X>3)\)?

Show Solution

Model \(X\sim \mathrm{Exp}(\lambda)\)

Given: mean=5 ⇒ \(\lambda=1/5=\mathbf{0.2}\).

Tail: \(P(X>t)=e^{-\lambda t}\Rightarrow P(X>3)=e^{-0.2\cdot 3}=\mathbf{0.5488}\).

=EXP(-0.2*3) or =1-EXPON.DIST(3, 0.2, TRUE)

E2. Queue wait (Exponential)

Waiting time (minutes) is \(\mathrm{Exp}(\lambda=0.5)\). Find \(P(X\le 2)\) and \(P(X>2)\).

Show Solution

Model \(X\sim \mathrm{Exp}(0.5)\)

CDF: \(F(x)=1-e^{-\lambda x}\Rightarrow F(2)=1-e^{-1}=\mathbf{0.6321}\).

Tail: \(P(X>2)=e^{-1}=\mathbf{0.3679}\).

=EXPON.DIST(2, 0.5, TRUE) and =1-EXPON.DIST(2, 0.5, TRUE)

E3. Service target (Exponential)

With \(\lambda=0.25\) per minute, find the 90th percentile wait time \(x_{0.90}\).

Show Solution

Model \(X\sim \mathrm{Exp}(0.25)\)

Quantile: \(x_p=F^{-1}(p)=-\tfrac{1}{\lambda}\ln(1-p)\Rightarrow x_{0.90}= -\tfrac{1}{0.25}\ln(0.1)=\mathbf{9.21}\,\text{min}\).

=-LN(1-0.9)/0.25

E4. Quick check (Exponential)

If mean time is 4 minutes, what is \(P(X<1)\)?

Show Solution

Model mean=4 ⇒ \(\lambda=1/4=0.25\)

CDF: \(F(1)=1-e^{-0.25\cdot 1}=\mathbf{0.2212}\).

=EXPON.DIST(1, 0.25, TRUE)

L1. Battery cycle life (Lognormal)

Let cycle life \(X\) be lognormal with \(\ln X\sim \mathcal{N}(\mu=6.5,\,\sigma=0.4)\). Find \(P(X\le 1000)\).

Show Solution

Model \(\ln X\sim \mathcal{N}(6.5,\,0.4^2)\)

Compute: \(P(X\le 1000)=P(\ln X\le \ln 1000)=\Phi\!\Big(\dfrac{\ln 1000-6.5}{0.4}\Big)\).

\(\ln 1000=6.9078\Rightarrow z=(6.9078-6.5)/0.4=1.0195\Rightarrow P=\mathbf{0.8469}\) (approx).

=LOGNORM.DIST(1000, 6.5, 0.4, TRUE)

L2. File download time (Lognormal)

Assume \(\ln X\sim \mathcal{N}(\mu=2.0,\,\sigma=0.5)\) for download time \(X\) in minutes. Find the median and the 90th percentile.

Show Solution

Facts For lognormal, median = \(e^{\mu}\), and \(x_p=\exp(\mu+\sigma z_p)\).

Median: \(e^{2.0}=\mathbf{7.389}\) min.

90th pct: \(z_{0.90}=1.2816\Rightarrow x_{0.90}=\exp(2+0.5\cdot1.2816)=\mathbf{15.96}\) min.

Median: =EXP(2)
90th: =EXP(2 + 0.5*NORM.S.INV(0.90))

L3. Cost overrun risk (Lognormal)

If \(\ln X\sim \mathcal{N}(3.2,\,0.6^2)\) for cost multiplier \(X\), what is \(P(X>40)\)?

Show Solution

Model \(\ln X\sim \mathcal{N}(3.2,\,0.6^2)\)

Tail: \(P(X>40)=1- P(\ln X\le \ln 40)\).

\(\ln 40=3.6889\Rightarrow z=(3.6889-3.2)/0.6=0.8148\Rightarrow P=1-\Phi(0.8148)=\mathbf{0.2070}\) (approx).

=1 - LOGNORM.DIST(40, 3.2, 0.6, TRUE)

L4. Solve a percentile (Lognormal)

Let \(\ln X\sim \mathcal{N}(\mu=1.5,\,\sigma=0.3)\). Find \(x\) such that \(P(X\le x)=0.80\).

Show Solution

Quantile \(x_p=\exp(\mu+\sigma z_p)\)

\(z_{0.80}=0.8416\Rightarrow x=\exp(1.5+0.3\cdot0.8416)=\mathbf{5.18}\) (approx).

=EXP(1.5 + 0.3*NORM.S.INV(0.80))