πŸ“˜ Beta Distribution

🧭 When to Use the Beta

πŸ“ Definitions & Key Formulas

Standard Beta (on [0,1]): \(X \sim \mathrm{Beta}(\alpha,\beta)\) with \(\alpha,\beta>0\)

Scaled Beta (on [a,b]): if \(Y\in[a,b]\), set \(X=\dfrac{Y-a}{b-a}\in[0,1]\). Then \(Y\sim \mathrm{ScaledBeta}(\alpha,\beta;a,b)\) and

Excel mapping: BETA.DIST(x, alpha, beta, cumulative, [A], [B]) and BETA.INV(p, alpha, beta, [A], [B]). Omit [A], [B] for the standard Beta on \([0,1]\). Include them for a scaled Beta on \([A,B]\).

πŸ› οΈ Worked Example 1 β€” Probability with Standard Beta

Scenario. A course’s pass rate \(P\) is modeled as \(P\sim \mathrm{Beta}(\alpha=8,\ \beta=4)\). What is \(P(P\ge 0.7)\)? Also report the mean and SD.

Step 1 β€” Mean/SD (sanity check)

Step 2 β€” Tail probability

\[ P(P\ge 0.7)=1-F(0.7)=1-I_{0.7}(8,4). \] (Use Excel to evaluate.)

Excel

=1 - BETA.DIST(0.7, 8, 4, TRUE)

Answer: \(P(P\ge 0.7)\approx\) (Excel will give the numeric value)

Interpretation: With mean ~0.667 and SD ~0.131, a 0.7 pass rate is a modest right-tail event.

🧰 Worked Example 2 β€” Warranty Cutoff with Scaled Beta

Scenario. A device’s **efficiency** \(Y\) lies in \([a,b]=[60\%,100\%]\). Suppose the rescaled proportion \(X=\dfrac{Y-0.60}{0.40}\) follows \(X\sim\mathrm{Beta}(\alpha=3,\ \beta=7)\). Find the **10th percentile** \(y_{0.10}\) to set a β€œbottom-10%” warranty threshold.

Step 1 β€” Use the scaled quantile transform

\[ y_p = a + (b-a)\,x_p, \quad x_p = \mathrm{BetaInv}(p;\alpha,\beta). \] With \(a=0.60,\ b=1.00,\ (b-a)=0.40\).

Step 2 β€” Compute \(x_{0.10}\) in \([0,1]\)

=BETA.INV(0.10, 3, 7)

Excel returns \(x_{0.10}\) (a number around 0.17–0.18 for these parameters).

Step 3 β€” Scale back to \([0.60,1.00]\)

\[ y_{0.10}=0.60 + 0.40 \times x_{0.10}. \]

=0.60 + 0.40 * BETA.INV(0.10, 3, 7)

Answer: \(y_{0.10}\) β‰ˆ 0.60 + 0.40Γ—(Excel value)

Interpretation: Only 10% of units fall below this efficiency. Use it as a conservative warranty cutoff.

🧾 Excel Quick Reference (Beta)

πŸ§ͺ Beta Explorer (try it yourself)