π Beta Distribution
π§ When to Use the Beta
- Modeling a **proportion / probability** in \([0,1]\), e.g., pass rate, click-through rate, yield, defect fraction.
- Modeling a **bounded quantity** on \([a,b]\) via a scaled Beta (linear transform of \([0,1]\)).
- As a **Bayesian prior/posterior** for binomial proportion \(p\) (conjugate prior).
- Flexible shapes controlled by \(\alpha\) and \(\beta\): U-shaped, uniform, unimodal, skewed.
π Definitions & Key Formulas
Standard Beta (on [0,1]): \(X \sim \mathrm{Beta}(\alpha,\beta)\) with \(\alpha,\beta>0\)
- PDF:
\[
f(x)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \quad 0<x<1
\]
where \(B(\alpha,\beta)=\dfrac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}\).
- CDF: \(F(x)=I_x(\alpha,\beta)\) (regularized incomplete beta).
- Mean: \(\mathbb{E}[X]=\dfrac{\alpha}{\alpha+\beta}\)
- Variance: \(\mathrm{Var}(X)=\dfrac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}\)
- Mode (if \(\alpha,\beta>1\)): \(\dfrac{\alpha-1}{\alpha+\beta-2}\)
Scaled Beta (on [a,b]): if \(Y\in[a,b]\), set \(X=\dfrac{Y-a}{b-a}\in[0,1]\).
Then \(Y\sim \mathrm{ScaledBeta}(\alpha,\beta;a,b)\) and
- \(f_Y(y)=\dfrac{1}{b-a}\, f_X\!\left(\dfrac{y-a}{b-a}\right)\), \(\quad a<y<b\)
- \(\mathbb{E}[Y]=a+(b-a)\dfrac{\alpha}{\alpha+\beta}\)
- \(\mathrm{Var}(Y)=(b-a)^2 \dfrac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}\)
- Quantile: \(y_p = a+(b-a)\,x_p\) where \(x_p\) is the Beta quantile in \([0,1]\).
Excel mapping:
BETA.DIST(x, alpha, beta, cumulative, [A], [B])
and
BETA.INV(p, alpha, beta, [A], [B])
.
Omit [A], [B]
for the standard Beta on \([0,1]\). Include them for a scaled Beta on \([A,B]\).
π οΈ Worked Example 1 β Probability with Standard Beta
Scenario. A courseβs pass rate \(P\) is modeled as \(P\sim \mathrm{Beta}(\alpha=8,\ \beta=4)\).
What is \(P(P\ge 0.7)\)? Also report the mean and SD.
Step 1 β Mean/SD (sanity check)
- Mean \(=\alpha/(\alpha+\beta)=8/12=0.6667\).
- Variance \(=\alpha\beta/[(\alpha+\beta)^2(\alpha+\beta+1)] = 8\cdot4/(12^2\cdot 13)=32/1872=0.017094\).
Hence SD \(\approx \sqrt{0.017094}=0.1308\).
Step 2 β Tail probability
\[
P(P\ge 0.7)=1-F(0.7)=1-I_{0.7}(8,4).
\]
(Use Excel to evaluate.)
Excel
=1 - BETA.DIST(0.7, 8, 4, TRUE)
Answer: \(P(P\ge 0.7)\approx\) (Excel will give the numeric value)
Interpretation: With mean ~0.667 and SD ~0.131, a 0.7 pass rate is a modest right-tail event.
π§° Worked Example 2 β Warranty Cutoff with Scaled Beta
Scenario. A deviceβs **efficiency** \(Y\) lies in \([a,b]=[60\%,100\%]\). Suppose the rescaled proportion
\(X=\dfrac{Y-0.60}{0.40}\) follows \(X\sim\mathrm{Beta}(\alpha=3,\ \beta=7)\).
Find the **10th percentile** \(y_{0.10}\) to set a βbottom-10%β warranty threshold.
Step 1 β Use the scaled quantile transform
\[
y_p = a + (b-a)\,x_p, \quad x_p = \mathrm{BetaInv}(p;\alpha,\beta).
\]
With \(a=0.60,\ b=1.00,\ (b-a)=0.40\).
Step 2 β Compute \(x_{0.10}\) in \([0,1]\)
=BETA.INV(0.10, 3, 7)
Excel returns \(x_{0.10}\) (a number around 0.17β0.18 for these parameters).
Step 3 β Scale back to \([0.60,1.00]\)
\[
y_{0.10}=0.60 + 0.40 \times x_{0.10}.
\]
=0.60 + 0.40 * BETA.INV(0.10, 3, 7)
Answer: \(y_{0.10}\) β 0.60 + 0.40Γ(Excel value)
Interpretation: Only 10% of units fall below this efficiency. Use it as a conservative warranty cutoff.
π§Ύ Excel Quick Reference (Beta)
- Standard Beta (on [0,1])
- CDF: =BETA.DIST(x, alpha, beta, TRUE)
- PDF: =BETA.DIST(x, alpha, beta, FALSE)
- Quantile: =BETA.INV(p, alpha, beta)
- Mean: =alpha / (alpha + beta)
- Variance: =alpha*beta / ((alpha+beta)^2 * (alpha+beta+1))
- Scaled Beta (on [A,B])
- CDF \(P(Y\le y)\): =BETA.DIST( (y-A)/(B-A), alpha, beta, TRUE )
- PDF: =BETA.DIST( (y-A)/(B-A), alpha, beta, FALSE ) / (B-A)
- Quantile \(y_p\): =A + (B-A) * BETA.INV(p, alpha, beta)
- Mean: =A + (B-A) * alpha/(alpha+beta)
- Variance: =(B-A)^2 * alpha*beta / ((alpha+beta)^2 * (alpha+beta+1))
π§ͺ Beta Explorer (try it yourself)