πŸ“˜ Chi-Square Distribution

🧭 When to Use the Chi-Square

πŸ“ Definitions & Key Formulas

Write \(X\sim\chi^2_k\) with degrees of freedom \(k>0\).

Excel mapping: CHISQ.DIST(x, df, TRUE) = CDF; CHISQ.DIST.RT(x, df) = right-tail \(P(X>x)\); CHISQ.INV(p, df) = lower-tail quantile; CHISQ.INV.RT(p, df) = right-tail critical value.

πŸ› οΈ Worked Example 1 β€” Right-Tail Probability

Scenario. Let \(X\sim\chi^2_{10}\). Find \(P(X>18.3)\).

Solution

We want the right tail: \(P(X>18.3)=1-F(18.3)\).

Excel: use the built-in right tail function:

=CHISQ.DIST.RT(18.3, 10)

Answer: \(P(X>18.3)\) β‰ˆ Excel result (about 0.05–0.06)

Sanity check: For \(k=10\), mean \(=10\), SD \(=\sqrt{20}\approx 4.472\). Value 18.3 is roughly \((18.3-10)/4.472\approx 1.86\) SDs above mean β†’ tail around a few percent.

🧰 Worked Example 2 β€” Critical Values for Tests

Scenario. We plan a **right-tailed** variance test with \(k=8\) degrees of freedom at significance \(\alpha=0.05\). Find the critical value \(c\) so that \(P(X>c)=0.05\) for \(X\sim\chi^2_{8}\). Also report the **central 95% interval** \([L,U]\) such that \(P(L\le X \le U)=0.95\).

Right-tailed cutoff

We need \(c=\chi^2_{8,\,0.05}\) (right-tail). In Excel:

=CHISQ.INV.RT(0.05, 8)

Answer: \(c\) = Excel value (β‰ˆ 15.507)

Central 95% interval

Lower 2.5% point \(L\): use lower-tail inverse with \(p=0.025\).

=CHISQ.INV(0.025, 8)

Upper 97.5% point \(U\): use right-tail inverse with \(0.025\).

=CHISQ.INV.RT(0.025, 8)

Answer: \([L,U]\) = (Excel values, β‰ˆ 2.180, 17.535)

Use \([L,U]\) to form CI for a variance of a normal population: \(\displaystyle \left[\frac{(n-1)S^2}{U},\ \frac{(n-1)S^2}{L}\right]\).

🧾 Excel Quick Reference (Chi-Square)

πŸ§ͺ Chi-Square Explorer (try it yourself)