Write \(X\sim\chi^2_k\) with degrees of freedom \(k>0\).
Excel mapping:
    CHISQ.DIST(x, df, TRUE) = CDF; 
    CHISQ.DIST.RT(x, df) = right-tail \(P(X>x)\); 
    CHISQ.INV(p, df) = lower-tail quantile; 
    CHISQ.INV.RT(p, df) = right-tail critical value.
  
Scenario. Let \(X\sim\chi^2_{10}\). Find \(P(X>18.3)\).
We want the right tail: \(P(X>18.3)=1-F(18.3)\).
Excel: use the built-in right tail function:
=CHISQ.DIST.RT(18.3, 10)
Answer: \(P(X>18.3)\) β Excel result (about 0.05β0.06)
Sanity check: For \(k=10\), mean \(=10\), SD \(=\sqrt{20}\approx 4.472\). Value 18.3 is roughly \((18.3-10)/4.472\approx 1.86\) SDs above mean β tail around a few percent.
Scenario. We plan a **right-tailed** variance test with \(k=8\) degrees of freedom at significance \(\alpha=0.05\). Find the critical value \(c\) so that \(P(X>c)=0.05\) for \(X\sim\chi^2_{8}\). Also report the **central 95% interval** \([L,U]\) such that \(P(L\le X \le U)=0.95\).
We need \(c=\chi^2_{8,\,0.05}\) (right-tail). In Excel:
=CHISQ.INV.RT(0.05, 8)
Answer: \(c\) = Excel value (β 15.507)
Lower 2.5% point \(L\): use lower-tail inverse with \(p=0.025\).
=CHISQ.INV(0.025, 8)
Upper 97.5% point \(U\): use right-tail inverse with \(0.025\).
=CHISQ.INV.RT(0.025, 8)
Answer: \([L,U]\) = (Excel values, β 2.180, 17.535)
Use \([L,U]\) to form CI for a variance of a normal population: \(\displaystyle \left[\frac{(n-1)S^2}{U},\ \frac{(n-1)S^2}{L}\right]\).