๐Ÿ“˜ Lognormal Distribution

๐Ÿ” What Is It?

A lognormal distribution describes a random variable whose natural logarithm is normally distributed. If

\[ W \sim \mathcal{N}(\theta, \omega^2), \quad \text{then } X = e^W \sim \text{Lognormal}(\theta, \omega) \]

๐Ÿงญ When to Use the Lognormal

๐Ÿ”ง Engineering Examples

๐ŸŽ“ Student-Life & Business Examples

๐Ÿ“Š Key Moments (Original Scale)

Mean: \( \mathbb{E}[X] = e^{\mu + \sigma^2/2} \)

Median: \( e^{\mu} \)

Mode: \( e^{\mu - \sigma^2} \)

For a lognormal, Mean > Median > Mode โ‡’ right-skewed.

๐Ÿ“ Key Formulas

๐Ÿ“Š Lognormal vs Normal

NormalLognormal
Can be negativeAlways positive
Symmetric bell curveRight-skewed, long tail
Used for additive effectsUsed for multiplicative effects

๐Ÿงฎ Step-by-Step Problem

Example: A studentโ€™s battery life follows \( \text{Lognormal}(3.5, 0.4) \). What is the probability it lasts more than 40 hours?

  1. We want \( P(X > 40) \)
  2. Use: \[ P(X > x) = 1 - \Phi\left( \frac{\ln(x) - \theta}{\omega} \right) \]
  3. Compute Z: \[ Z = \frac{\ln(40) - 3.5}{0.4} = \frac{3.688 - 3.5}{0.4} = 0.47 \]
  4. Lookup \( \Phi(0.47) โ‰ˆ 0.6808 \), so: \[ P(X > 40) = 1 - 0.6808 = 0.3192 \]

โœ… Answer: 31.92%

โš™๏ธ Try It Yourself

๐Ÿงช Practice Problem

Scenario: Battery life is lognormal with \( \theta = 3.2, \omega = 0.5 \). What is \( P(X > 30) \)?