Use this as a step‑by‑step walkthrough in class. The examples below use hypothetical Statics grade dataset (n = 150) with sample statistics \(\mu \approx 83.54\) and \(\sigma \approx 7.44\) (sample stdev).
Assume grades are in B2:B151.
Measure | Excel Formula | Meaning |
---|---|---|
Mean (\(\mu\)) | =AVERAGE(B2:B151) | Center of the distribution |
Standard Deviation (\(\sigma\)) | =STDEV.S(B2:B151) | Spread of the grades (use STDEV.S for a sample) |
Min / Max | =MIN(B2:B151) / =MAX(B2:B151) | Range check |
Count | =COUNT(B2:B151) | Sample size |
For our dataset: \(n=150\), \(\mu\approx83.54\), \(\sigma\approx7.44\), min = 69, max = 100.
Standardize any grade \(x\) to a z‑score:
Excel (if mean in D2 and stdev in D3): =(B2-$D$2)/$D$3
Task | Excel Formula | Math Equivalent |
---|---|---|
Left‑tail \(P(X\le x)\) | =NORM.DIST(x, μ, σ, TRUE) | \(F(x)\) |
Right‑tail \(P(X\ge x)\) | =1-NORM.DIST(x, μ, σ, TRUE) | \(1-F(x)\) |
Between \(P(a\le X\le b)\) | =NORM.DIST(b, μ, σ, TRUE)-NORM.DIST(a, μ, σ, TRUE) | \(F(b)-F(a)\) |
Percentile → x | =NORM.INV(p, μ, σ) | solve \(x=\mu+\sigma z_p\) |
The z‑score transforms any normal random variable \(X\sim\mathcal{N}(μ,σ^2)\) into the standard normal \(Z\sim\mathcal{N}(0,1)\):
This rescaling centers the distribution at 0 and makes the spread 1. Historically, before computers, students used printed z‑tables to look up \(Φ(z)=P(Z≤z)\) and find probabilities. Today, Excel and calculators compute \(P(X≤x)\) directly, but z‑scores are still crucial for:
Bottom line: Excel doesn’t require you to compute z to get probabilities, but learning z builds conceptual understanding and prepares students for hypothesis testing and theoretical statistics.
Mean: =AVERAGE(B2:B151) Stdev (sample): =STDEV.S(B2:B151) Left tail P(X≤x): =NORM.DIST(x, $D$2, $D$3, TRUE) Right tail P(X≥x): =1-NORM.DIST(x, $D$2, $D$3, TRUE) Between a..b: =NORM.DIST(b,$D$2,$D$3,TRUE)-NORM.DIST(a,$D$2,$D$3,TRUE) Percentile → x: =NORM.INV(p, $D$2, $D$3) z-score for cell B2: =(B2-$D$2)/$D$3
Replace x, a, b, and p with your chosen values. Cells D2 and D3 hold the computed mean and stdev.
student id | Statics_Grade |
---|---|
1 | 75 |
2 | 71 |
3 | 74 |
4 | 90 |
5 | 74 |
6 | 100 |
7 | 86 |
8 | 83 |
9 | 75 |
10 | 88 |
11 | 77 |
12 | 83 |
13 | 100 |
14 | 81 |
15 | 91 |
16 | 76 |
17 | 82 |
18 | 96 |
19 | 77 |
20 | 96 |
21 | 88 |
22 | 78 |
23 | 87 |
24 | 90 |
25 | 87 |
26 | 69 |
27 | 76 |
28 | 80 |
29 | 81 |
30 | 87 |
31 | 83 |
32 | 71 |
33 | 85 |
34 | 87 |
35 | 86 |
36 | 91 |
37 | 89 |
38 | 86 |
39 | 81 |
40 | 69 |
41 | 85 |
42 | 84 |
43 | 84 |
44 | 72 |
45 | 73 |
46 | 90 |
47 | 82 |
48 | 87 |
49 | 82 |
50 | 82 |
51 | 90 |
52 | 78 |
53 | 83 |
54 | 78 |
55 | 79 |
56 | 80 |
57 | 84 |
58 | 78 |
59 | 92 |
60 | 75 |
61 | 81 |
62 | 78 |
63 | 94 |
64 | 84 |
65 | 90 |
66 | 70 |
67 | 84 |
68 | 89 |
69 | 83 |
70 | 91 |
71 | 78 |
72 | 93 |
73 | 100 |
74 | 79 |
75 | 78 |
76 | 94 |
77 | 95 |
78 | 78 |
79 | 79 |
80 | 80 |
81 | 71 |
82 | 75 |
83 | 74 |
84 | 76 |
85 | 82 |
86 | 84 |
87 | 94 |
88 | 74 |
89 | 90 |
90 | 80 |
91 | 82 |
92 | 87 |
93 | 73 |
94 | 85 |
95 | 83 |
96 | 86 |
97 | 84 |
98 | 100 |
99 | 77 |
100 | 78 |
101 | 77 |
102 | 78 |
103 | 77 |
104 | 92 |
105 | 93 |
106 | 77 |
107 | 75 |
108 | 86 |
109 | 78 |
110 | 87 |
111 | 84 |
112 | 70 |
113 | 94 |
114 | 96 |
115 | 77 |
116 | 79 |
117 | 84 |
118 | 85 |
119 | 87 |
120 | 98 |
121 | 81 |
122 | 76 |
123 | 71 |
124 | 76 |
125 | 82 |
126 | 96 |
127 | 78 |
128 | 84 |
129 | 82 |
130 | 92 |
131 | 100 |
132 | 78 |
133 | 78 |
134 | 90 |
135 | 87 |
136 | 97 |
137 | 87 |
138 | 79 |
139 | 87 |
140 | 91 |
141 | 89 |
142 | 86 |
143 | 91 |
144 | 91 |
145 | 93 |
146 | 87 |
147 | 81 |
148 | 83 |
149 | 92 |
150 | 75 |
Enter your dataset’s mean (μ) and stdev (σ), or click “Use practice dataset”. Once μ and σ are known, the entire distribution is defined — no need to reference every data point!
Mean (μ) | |
Stdev (σ) |
x | |
z = (x−μ)/σ | |
P(X ≤ x) |
p (0–1) | |
zp = Φ⁻¹(p) | |
x = μ + σ·zp |
a | |
b | |
P(a ≤ X ≤ b) |
Excel equivalents: NORM.DIST(x, μ, σ, TRUE), 1−NORM.DIST(x, μ, σ, TRUE), NORM.DIST(b, μ, σ, TRUE)−NORM.DIST(a, μ, σ, TRUE), NORM.INV(p, μ, σ).