📘 Chapter 4 Review — PDFs, CDFs & Excel

One-page reference for common positive-support distributions plus Normal. Each box shows: PDF, CDF, key moments, quantiles, and **Excel** formulas.

Normal \( \mathcal{N}(\mu,\sigma^2) \)

Lognormal \( \mathrm{Lognormal}(\theta,\omega) \) where \(\ln X \sim \mathcal{N}(\theta,\omega^2)\)

Exponential (rate \(\lambda\)) or (mean \(\delta\))

Gamma / Erlang

Shape–Scale \(X\sim \mathrm{Gamma}(\alpha,\theta)\): PDF \(f(x)=\dfrac{x^{\alpha-1}e^{-x/\theta}}{\Gamma(\alpha)\theta^\alpha}\), \(E[X]=\alpha\theta\), \(\mathrm{Var}(X)=\alpha\theta^2\).

Shape–Rate \(X\sim \mathrm{Gamma}(\alpha,\lambda)\): PDF \(f(x)=\dfrac{\lambda^\alpha x^{\alpha-1}e^{-\lambda x}}{\Gamma(\alpha)}\), \(E[X]=\alpha/\lambda\), \(\mathrm{Var}(X)=\alpha/\lambda^2\).

Weibull \( \mathrm{Weibull}(\beta,\delta) \)

Beta \( \mathrm{Beta}(\alpha,\beta) \) and Scaled Beta \([a,b]\)

Chi-Square \( \chi^2_k \)

🧾 Excel Summary (All Distributions)

Normal

=NORM.DIST(x, mean, sd, TRUE/FALSE)
=NORM.S.DIST(z, TRUE/FALSE)
=NORM.INV(p, mean, sd), =NORM.S.INV(p)

Lognormal

=LOGNORM.DIST(x, theta, omega, TRUE/FALSE)
=LOGNORM.INV(p, theta, omega)

Exponential

=EXPON.DIST(x, lambda, TRUE/FALSE)   (lambda = 1/mean)

Gamma / Erlang

=GAMMA.DIST(x, alpha, theta, TRUE/FALSE)   (theta = scale)
=GAMMA.INV(p, alpha, theta)

Weibull

=WEIBULL.DIST(x, alpha, beta, TRUE/FALSE)   (alpha=shape β, beta=scale δ)
=WEIBULL.INV(p, alpha, beta)

Beta

=BETA.DIST(x, alpha, beta, TRUE/FALSE, [A], [B])
=BETA.INV(p, alpha, beta, [A], [B])

Chi-Square

=CHISQ.DIST(x, df, TRUE/FALSE)
=CHISQ.DIST.RT(x, df)   (right tail)
=CHISQ.INV(p, df), =CHISQ.INV.RT(p, df)

Parameter reminders: Excel’s “beta” for Gamma/Weibull means **scale**. For Gamma with rate \(\lambda\), use theta = 1/lambda. For Exponential with mean \(\delta\), use lambda = 1/δ. For Beta on \([A,B]\), pass [A],[B]; omit for standard \([0,1]\).