We write \(X \sim \text{Weibull}(\beta,\delta)\) with shape \(\beta\) and scale \(\delta\) (both > 0).
Excel parameter mapping: WEIBULL.DIST(x, alpha, beta, cumulative)
uses
alpha = shape = \(\beta\), beta = scale = \(\delta\).
Quantiles: WEIBULL.INV(p, alpha, beta)
.
Scenario. A bearing lifetime \(X\) (hours) follows \(\text{Weibull}(\beta=1.5,\ \delta=5000)\). Find \(P(X>6000)\) and interpret.
\[ P(X>x)=\exp\!\left(-\left(\frac{x}{\delta}\right)^\beta\right) \]
\[ P(X>6000)=\exp\!\left(-\left(\frac{6000}{5000}\right)^{1.5}\right) = \exp\!\big(-1.2^{1.5}\big) \]
\(1.2^{1.5} = 1.2\sqrt{1.2} \approx 1.2\times 1.0954 \approx 1.3145\)
\[ P(X>6000) \approx e^{-1.3145} \approx \color{#1a237e}{\mathbf{0.2686}} \] Answer: \(P(X>6000)\approx 0.269\)
=1 - WEIBULL.DIST(6000, 1.5, 5000, TRUE) โ 0.2686
Interpretation: With these parameters, ~26.9% of bearings last beyond 6000 hours.
Scenario. Smartphone battery life \(X\) (months) follows \(\text{Weibull}(\beta=2.2,\ \delta=30)\). The company wants a warranty so that only the bottom 5% fail before the warranty end. Find the cutoff \(x_{0.05}\) and also compute the mean lifetime.
Use the quantile formula \(x_p=\delta\,[-\ln(1-p)]^{1/\beta}\):
\[ x_{0.05} = 30 \times \big[-\ln(1-0.05)\big]^{1/2.2} = 30 \times [ -\ln(0.95) ]^{0.4545} \]
\(-\ln(0.95) \approx 0.051293\) so \([0.051293]^{0.4545} \approx 0.3052\).
\[ x_{0.05} \approx 30 \times 0.3052 \approx \color{#1a237e}{\mathbf{9.16\ \text{months}}} \] Answer: Warranty cutoff โ 9.16 months
=WEIBULL.INV(0.05, 2.2, 30) โ 9.16
Mean \(=\delta \Gamma(1+1/\beta)=30\times \Gamma(1+1/2.2)=30\times \Gamma(1.4545)\).
Using a calculator or Excelโs GAMMA
, \(\Gamma(1.4545)\approx 0.8850\).
\[ \mathbb{E}[X]\approx 30\times 0.8850 \approx \color{#1a237e}{\mathbf{26.55\ \text{months}}} \] Answer: Mean โ 26.6 months
=30 * GAMMA(1 + 1/2.2) โ 26.55