๐Ÿ“˜ Weibull Distribution

๐Ÿงญ When to Use the Weibull

๐Ÿ“ Definitions & Key Formulas

We write \(X \sim \text{Weibull}(\beta,\delta)\) with shape \(\beta\) and scale \(\delta\) (both > 0).

Excel parameter mapping: WEIBULL.DIST(x, alpha, beta, cumulative) uses alpha = shape = \(\beta\), beta = scale = \(\delta\). Quantiles: WEIBULL.INV(p, alpha, beta).

๐Ÿ› ๏ธ Worked Example 1 โ€” Tail Probability

Scenario. A bearing lifetime \(X\) (hours) follows \(\text{Weibull}(\beta=1.5,\ \delta=5000)\). Find \(P(X>6000)\) and interpret.

Step 1 โ€” Use survival function

\[ P(X>x)=\exp\!\left(-\left(\frac{x}{\delta}\right)^\beta\right) \]

Step 2 โ€” Substitute numbers

\[ P(X>6000)=\exp\!\left(-\left(\frac{6000}{5000}\right)^{1.5}\right) = \exp\!\big(-1.2^{1.5}\big) \]

\(1.2^{1.5} = 1.2\sqrt{1.2} \approx 1.2\times 1.0954 \approx 1.3145\)

\[ P(X>6000) \approx e^{-1.3145} \approx \color{#1a237e}{\mathbf{0.2686}} \] Answer: \(P(X>6000)\approx 0.269\)

Excel

=1 - WEIBULL.DIST(6000, 1.5, 5000, TRUE) โžœ 0.2686

Interpretation: With these parameters, ~26.9% of bearings last beyond 6000 hours.

๐Ÿงฐ Worked Example 2 โ€” Warranty Percentile

Scenario. Smartphone battery life \(X\) (months) follows \(\text{Weibull}(\beta=2.2,\ \delta=30)\). The company wants a warranty so that only the bottom 5% fail before the warranty end. Find the cutoff \(x_{0.05}\) and also compute the mean lifetime.

Part A โ€” 5th percentile \(x_{0.05}\)

Use the quantile formula \(x_p=\delta\,[-\ln(1-p)]^{1/\beta}\):

\[ x_{0.05} = 30 \times \big[-\ln(1-0.05)\big]^{1/2.2} = 30 \times [ -\ln(0.95) ]^{0.4545} \]

\(-\ln(0.95) \approx 0.051293\) so \([0.051293]^{0.4545} \approx 0.3052\).

\[ x_{0.05} \approx 30 \times 0.3052 \approx \color{#1a237e}{\mathbf{9.16\ \text{months}}} \] Answer: Warranty cutoff โ‰ˆ 9.16 months

Excel

=WEIBULL.INV(0.05, 2.2, 30) โžœ 9.16

Part B โ€” Mean lifetime

Mean \(=\delta \Gamma(1+1/\beta)=30\times \Gamma(1+1/2.2)=30\times \Gamma(1.4545)\).

Using a calculator or Excelโ€™s GAMMA, \(\Gamma(1.4545)\approx 0.8850\).

\[ \mathbb{E}[X]\approx 30\times 0.8850 \approx \color{#1a237e}{\mathbf{26.55\ \text{months}}} \] Answer: Mean โ‰ˆ 26.6 months

Excel

=30 * GAMMA(1 + 1/2.2) โžœ 26.55

๐Ÿงพ Excel Quick Reference (Weibull)

๐Ÿงช Weibull Explorer (try it yourself)