ENGR200 • Chapter 5 Homework Solution — Covariance & Correlation

Dataset: 150 JU engineering students. Variables: Class_Participation and Statics_Grade (from chapter5_homework_data.csv). This solution uses direct Excel formulas for the full dataset — no coding, no manual arithmetic.

1) Dataset Columns

ColumnDescriptionExcel Range
AStudent_IDA2:A151
BClass_ParticipationB2:B151
CStatics_GradeC2:C151

2) Step 1 — Compute Means

VariableExcel FormulaResult (example)
Mean(Class_Participation)=AVERAGE(B2:B151)≈ 7.2
Mean(Statics_Grade)=AVERAGE(C2:C151)≈ 80.4

3) Step 2 — Population Variances

VariableExcel FormulaResult (example)
Var(Class_Participation)=VAR.P(B2:B151)≈ 1.9
Var(Statics_Grade)=VAR.P(C2:C151)≈ 80.0

💡 Use VAR.S() if your course requires sample variance instead of population variance.

4) Step 3 — Covariance

Variable PairExcel FormulaResult (example)
(Class_Participation, Statics_Grade)=COVARIANCE.P(B2:B151,C2:C151)≈ 3.46

Covariance > 0 → variables move together. Covariance < 0 → inverse relationship.

5) Step 4 — Correlation

Variable PairExcel FormulaResult (example)
(Class_Participation, Statics_Grade)=CORREL(B2:B151,C2:C151)≈ 0.09
Interpretation: The correlation (≈ 0.09) is weakly positive — students with higher participation scores tend to have slightly higher Statics grades, but the relationship is not strong.

6) Summary Table

MetricExcel FormulaResultInterpretation
μX = Mean(Class_Participation)=AVERAGE(B2:B151)≈ 7.2Average participation
μY = Mean(Statics_Grade)=AVERAGE(C2:C151)≈ 80.4Average grade
Var(X)=VAR.P(B2:B151)≈ 1.9Spread in participation
Var(Y)=VAR.P(C2:C151)≈ 80.0Spread in grades
Cov(X,Y)=COVARIANCE.P(B2:B151,C2:C151)≈ 3.46Small positive joint movement
ρXY=CORREL(B2:B151,C2:C151)≈ 0.09Weak positive relationship

7) Quick Copy Block (Excel)

=AVERAGE(B2:B151)
=AVERAGE(C2:C151)
=VAR.P(B2:B151)
=VAR.P(C2:C151)
=COVARIANCE.P(B2:B151,C2:C151)
=CORREL(B2:B151,C2:C151)
    

8) Concept Check