1) For a joint discrete pmf \(f_{XY}(x,y)\):
$$\sum_x\sum_y f_{XY}(x,y)=1.$$
2) The marginal pmf is obtained by summing the joint over the other variable:
$$f_X(x)=\sum_y f_{XY}(x,y).$$
4) For a conditional pdf,
$$\int_{-\infty}^{\infty} f_{Y|X}(y|x)\,dy = 1 \quad\text{whenever } f_X(x)>0.$$
10) For events \(A,B\) with \(P(B)>0\):
$$P(A|B)=\frac{P(A\cap B)}{P(B)}.$$
12) If \(X,Y\) independent, then
$$F_{XY}(x,y)=F_X(x)+F_Y(y).$$
13) If \(f_{XY}(x,y)=f_X(x)f_Y(y)\) for all \(x,y\), then \(\operatorname{Cov}(X,Y)\) can be nonzero.
15) For continuous \(X,Y\): \(P(X=a,Y=b)>0\) whenever \(f_{XY}(a,b)>0\).