Quiz — Conditional Probability ENGR200

True/False. Click an answer to see instant feedback. Score updates automatically.

1) For a joint discrete pmf \(f_{XY}(x,y)\):

$$\sum_x\sum_y f_{XY}(x,y)=1.$$

2) The marginal pmf is obtained by summing the joint over the other variable:

$$f_X(x)=\sum_y f_{XY}(x,y).$$

3) The conditional pmf equals \(f_Y(y)/f_X(x)\).

4) For a conditional pdf,

$$\int_{-\infty}^{\infty} f_{Y|X}(y|x)\,dy = 1 \quad\text{whenever } f_X(x)>0.$$

5) If \(X\) and \(Y\) are independent, then \(p_{Y|X}(y|x)=p_Y(y)\).

6) If \(p_{Y|X}(y|x)=p_Y(y)\) holds for just one \(x\), that’s enough for independence.

7) Law of total probability (discrete):

$$p_Y(y)=\sum_x p_{Y|X}(y|x)p_X(x).$$

8) Bayes’ rule:

$$p_{X|Y}(x|y)=\frac{p_{Y|X}(y|x)p_X(x)}{p_Y(y)},\quad p_Y(y)>0.$$

9) In a joint pmf table, negative cells (e.g. -0.01) are acceptable if total=1.

10) For events \(A,B\) with \(P(B)>0\):

$$P(A|B)=\frac{P(A\cap B)}{P(B)}.$$

11) If \(f_X(x_0)=0\), then \(p_{Y|X}(y|x_0)=0\) for all \(y\).

12) If \(X,Y\) independent, then

$$F_{XY}(x,y)=F_X(x)+F_Y(y).$$

13) If \(f_{XY}(x,y)=f_X(x)f_Y(y)\) for all \(x,y\), then \(\operatorname{Cov}(X,Y)\) can be nonzero.

14) If \(\operatorname{Cov}(X,Y)=0\), then \(X\) and \(Y\) must be independent.

15) For continuous \(X,Y\): \(P(X=a,Y=b)>0\) whenever \(f_{XY}(a,b)>0\).

Score: 0/15 correct