📘 Chapter 7 – Key Concepts Summary

📌 7.2 Central Limit Theorem (CLT)

Sample means follow a normal distribution as n increases, regardless of population shape.

X̄ ∼ N(μ, σ²/n)

📌 7.3 Unbiased Estimator

An estimator is unbiased if the expected value equals the true parameter.

E(θ̂) = θ

Example: E(X̄) = μ

📌 7.3.4 Bootstrap Standard Error

Bootstrap estimates variability by resampling with replacement from the original data.

Bootstrap SE Formula:

SE_B(θ̂) = √[ (1 / (n_B - 1)) Σ (θ̂_Bᵢ - θ̄_B)² ]

Used to estimate uncertainty for any statistic: mean, SD, median, regression, etc.

📌 7.4.3a Maximum Likelihood Estimation (MLE)

MLE chooses parameter values that maximize the likelihood of observed data.

L(p) = p^k · (1 - p)^(n - k)

MLE: p̂ = k / n

📌 7.4.3b MLE for Linear Regression

Assuming normal errors, MLE estimates match those from Ordinary Least Squares (OLS).

β₁̂ = Σ(Xᵢ - X̄)(Yᵢ - Ȳ) / Σ(Xᵢ - X̄)²

β₀̂ = Ȳ - β₁̂ X̄

ŷ = β₀̂ + β₁̂ X