πŸ“˜ When and How to Use a One-Sample t-Test

This app helps students understand when and why to use a t-test instead of a z-test, including equations, step-by-step computations, and examples β€” no graphs.

🧠 When to Use a t-Test

πŸ“ Test Statistic Formula

t = (xΜ„ βˆ’ ΞΌβ‚€) / (s / √n)
where:

πŸ“‘ Summary Table: One-Sample t-Test (Variance Unknown)

Alternative HypothesisP-valueReject Hβ‚€ if...
H₁: ΞΌ β‰  ΞΌβ‚€ 2P(Tₙ₋₁ > |tβ‚€|) tβ‚€ > tₐ⁄₂,ₙ₋₁ or tβ‚€ < βˆ’tₐ⁄₂,ₙ₋₁
H₁: ΞΌ > ΞΌβ‚€ P(Tₙ₋₁ > tβ‚€) tβ‚€ > tₐ,ₙ₋₁
H₁: ΞΌ < ΞΌβ‚€ P(Tₙ₋₁ < tβ‚€) tβ‚€ < βˆ’tₐ,ₙ₋₁

πŸ§ͺ Example: Golf Club Restitution

Given:
Sample mean xΜ„ = 0.83725, s = 0.02456, ΞΌβ‚€ = 0.82, n = 15
Degrees of freedom: df = 14

Step-by-Step:

Step 1: Compute Standard Error:
SE = s / √n = 0.02456 / √15 = 0.00634

Step 2: Compute t-statistic:
t = (0.83725 βˆ’ 0.82) / 0.00634 = 2.681

Step 3: Find critical value at Ξ± = 0.05 (right-tailed):
tβ‚€.05,14 = 2.145

Step 4: Compare and conclude:
2.681 > 2.145 β‡’ Reject Hβ‚€

Step 5: P-value (from software):
P β‰ˆ 0.0179

βœ… Final Summary

πŸ“˜ T-test vs Z-test Comparison

Aspectt-testz-test
Population Variance Known?No (use s)Yes (use Οƒ)
Distribution AssumptionNormal or approx. normalNormal
Degrees of Freedomn βˆ’ 1N/A (standard normal)
Test Statistict = (xΜ„ βˆ’ ΞΌβ‚€) / (s / √n)z = (xΜ„ βˆ’ ΞΌβ‚€) / (Οƒ / √n)
Used Whenσ unknown, small nσ known, large n
Table/Dist UsedStudent’s tStandard Normal