This app helps students understand when and why to use a t-test instead of a z-test, including equations, step-by-step computations, and examples β no graphs.
  t = (xΜ β ΞΌβ) / (s / βn)
  where:
  
| Alternative Hypothesis | P-value | Reject Hβ if... | 
|---|---|---|
| Hβ: ΞΌ β ΞΌβ | 2P(Tβββ > |tβ|) | tβ > tβββ,βββ or tβ < βtβββ,βββ | 
| Hβ: ΞΌ > ΞΌβ | P(Tβββ > tβ) | tβ > tβ,βββ | 
| Hβ: ΞΌ < ΞΌβ | P(Tβββ < tβ) | tβ < βtβ,βββ | 
| Aspect | t-test | z-test | 
|---|---|---|
| Population Variance Known? | No (use s) | Yes (use Ο) | 
| Distribution Assumption | Normal or approx. normal | Normal | 
| Degrees of Freedom | n β 1 | N/A (standard normal) | 
| Test Statistic | t = (xΜ β ΞΌβ) / (s / βn) | z = (xΜ β ΞΌβ) / (Ο / βn) | 
| Used When | Ο unknown, small n | Ο known, large n | 
| Table/Dist Used | Studentβs t | Standard Normal |