Excel Cheat Sheet — z-Tests (Type I α, Type II β, Power, p-value, sample size)
Context: student commute times. Use these copy-ready Excel formulas. No external add-ins needed.
Inputs (example values students can change)
Typical cells (or constants in LET)
- Null mean μ0:
30minutes - “True” mean for power μ1: e.g.
33.5(pick a meaningful effect) - Std dev σ:
6.1(known or good estimate) - Sample size n:
23 - Significance α:
0.05 - Observed sample mean ȳ (for p-value): e.g.
33.1
α chosen false-alarm rate. β miss rate at your chosen μ1. Power = 1−β.
Pick μ1 to reflect a practically important shift (e.g., +2.0 minutes), not to “game” power.
1) Standard Error (SE)
= sigma / SQRT(n) = 6.1 / SQRT(23)
=LET(sigma,6.1, n,23, sigma/SQRT(n))
2) Critical value(s) and critical region on ȳ
Two-sided test (μ ≠ μ0)
z_star = NORM.S.INV(1 - alpha/2) L = mu0 - z_star * SE U = mu0 + z_star * SE = NORM.S.INV(1-0.05/2) // 1.959963985 = 30 - z* * (6.1/SQRT(23)) // L = 30 + z* * (6.1/SQRT(23)) // U
Right-tailed (μ > μ0)
z_star = NORM.S.INV(1 - alpha) U = mu0 + z_star * SE // reject if ȳ > U
Left-tailed (μ < μ0)
z_star = NORM.S.INV(1 - alpha) L = mu0 - z_star * SE // reject if ȳ < L
LET block (auto-tail → returns SE, L, U)
=LET( mu0,30, sigma,6.1, n,23, alpha,0.05, tail,"two", /* "two","right","left" */ SE, sigma/SQRT(n), z2, NORM.S.INV(1-alpha/2), z1, NORM.S.INV(1-alpha), L, IF(tail="two", mu0 - z2*SE, IF(tail="right", -1E99, mu0 - z1*SE)), U, IF(tail="two", mu0 + z2*SE, IF(tail="right", mu0 + z1*SE, 1E99 )), HSTACK(SE,L,U) )
3) p-value for an observed mean ȳ
First compute the z statistic: z = (ybar - mu0) / SE
Two-sided
= 2 * (1 - NORM.S.DIST(ABS(z), TRUE))
Right-tailed
= 1 - NORM.S.DIST(z, TRUE)
Left-tailed
= NORM.S.DIST(z, TRUE)
One-shot LET for p-value (auto-tail)
=LET(
ybar,33.1, mu0,30, sigma,6.1, n,23, tail,"two",
SE, sigma/SQRT(n),
z, (ybar-mu0)/SE,
IF(tail="two", 2*(1-NORM.S.DIST(ABS(z),TRUE)),
IF(tail="right", 1-NORM.S.DIST(z,TRUE), NORM.S.DIST(z,TRUE)))
)
4) Type II error (β) and Power at a chosen μ1
Choose a meaningful μ1 (e.g., 32.0 or 33.5). Power = 1−β.
Two-sided
β = NORM.DIST(U, mu1, SE, TRUE) - NORM.DIST(L, mu1, SE, TRUE) Power = 1 - β
Right-tailed
β = NORM.DIST(U, mu1, SE, TRUE) Power = 1 - β
Left-tailed
β = 1 - NORM.DIST(L, mu1, SE, TRUE) Power = 1 - β
LET block (auto-tail → returns Power)
=LET(
mu0,30, mu1,33.5, sigma,6.1, n,23, alpha,0.05, tail,"two",
SE, sigma/SQRT(n),
z2, NORM.S.INV(1-alpha/2),
z1, NORM.S.INV(1-alpha),
L, IF(tail="two", mu0 - z2*SE, IF(tail="right", -1E99, mu0 - z1*SE)),
U, IF(tail="two", mu0 + z2*SE, IF(tail="right", mu0 + z1*SE, 1E99 )),
beta,
IF(tail="two",
NORM.DIST(U, mu1, SE, TRUE) - NORM.DIST(L, mu1, SE, TRUE),
IF(tail="right",
NORM.DIST(U, mu1, SE, TRUE),
1 - NORM.DIST(L, mu1, SE, TRUE))),
1 - beta
)
5) Sample size for target Power (planning)
Let δ = |μ1 − μ0| be the smallest meaningful difference you want to detect.
Two-sided (approx., normal)
=ROUNDUP( ((NORM.S.INV(1-alpha/2) + NORM.S.INV(power)) * sigma / delta)^2 , 0 )
One-sided
=ROUNDUP( ((NORM.S.INV(1-alpha) + NORM.S.INV(power)) * sigma / delta)^2 , 0 )
Example (α=0.05, power=0.80, σ=6.1, δ=2.0)
=ROUNDUP( ((NORM.S.INV(0.975) + NORM.S.INV(0.80)) * 6.1 / 2)^2 , 0 )
6) Confidence interval (z-CI) link
(1−α) CI for the mean using ȳ and SE:
Lower = ybar - NORM.S.INV(1-alpha/2) * SE Upper = ybar + NORM.S.INV(1-alpha/2) * SE
Two-sided equivalence: Reject H0 iff μ0 is outside the (1−α) CI.
7) Quick reporting line (fill placeholders)
SE = [σ/√n]. Two-sided z-test at α = [α]. Critical region on ȳ: [L, U]. Observed z = (ȳ − μ0)/SE; p-value = [p]. At μ1 = [chosen effect], β = [β], Power = [1−β]. Decision: [Reject / Fail to reject] H0. Interpretation: [plain-English sentence for the commute context].
8) Reminders students always forget
- α is chosen (false alarm). β depends on μ1, n, σ, α, tail. Power = 1−β.
- Pick μ1 for a meaningful effect (e.g., +2 min), not to inflate Power.
- More n → smaller SE → lower β → higher Power.
- Unknown σ with small samples → use t methods; this sheet is the z version.
- Excel: use cumulative forms:
NORM.S.DIST(z,TRUE),NORM.DIST(x,μ,σ,TRUE).