Second Midterm — Part 2

Questions shown first; click to reveal solutions under each part.

Q1 • Coffee Dispenser Calibration (Normal)

Assume \(X \sim \mathcal{N}(\mu=350, \sigma=12)\).

  1. What proportion of cups are below 340 mL?
  2. What proportion of cups are above 360 mL?
  3. What proportion of cups are between 340 mL and 360 mL?
  4. The café labels a cup “XL” if it is in the top 5% of volumes. What threshold (mL) triggers the label?
  5. The cup’s capacity is 375 mL. What is \(P(X>375)\)?
  6. On a day with 800 pours, how many overflows do you expect? Also report a 95% normal-approx range for the count.
Show Solutions
Model & method: standardize with \(z=(x-\mu)/\sigma\); use \(\Phi(z)\) for CDF.
(a) \(z_{340}=-0.8333 \Rightarrow P=\Phi(z)=0.2023\).
(b) \(z_{360}=0.8333 \Rightarrow P=1-\Phi(z)=0.2023\).
(c) \(\Phi(0.8333)-\Phi(-0.8333)=0.5953\).
(d) \(x_{0.95}=\mu+\sigma z_{0.95}=350+12(1.6449)=369.74\,\text{mL}\).
(e) \(z_{375}=2.0833 \Rightarrow P=1-\Phi(z)=0.0186\).
(f) \(E=800\times 0.0186=14.89\). 95% range: \(7.40, 22.38\).
Excel: =NORM.DIST(340,350,12,TRUE), =1-NORM.DIST(360,350,12,TRUE), =NORM.DIST(360,350,12,TRUE)-NORM.DIST(340,350,12,TRUE), =NORM.INV(0.95,350,12), =1-NORM.DIST(375,350,12,TRUE). For counts: mean=800*p, sd=SQRT(800*p*(1-p)).

Q2 • Bins & Observed Counts (n=50)

X: T1=<5, T2=5–15, T3=15–30, T4=>30.   Y: A=<$10, B=$10–20, C=$20–30, D=$30–40, E=>$40.

Y \\ XT1<5T2 5–15T3 15–30T4 >30Row Sum
A: < $1043108
B: $10–20253111
C: $20–30134210
D: $30–40014510
E: > $40003811
Col Sum712151650
  1. Compute \(f(X=T3, Y=D)\).
  2. Compute \(f_X(T3)\).
  3. Compute \(P(Y=E \mid X=T4)\).
  4. Compute \(P(X\ge15)\).
  5. Compute \(P(Y\ge30)\).
  6. Check independence at (T4,E): compare \(f(T4,E)\) with \(f_X(T4)f_Y(E)\).
Show Solutions
Let \(n=50\).
(1) \(f(T3,D)=4/50=\mathbf{0.0800}\).
(2) \(f_X(T3)=15/50=\mathbf{0.3000}\).
(3) \(P(Y=E\mid X=T4)=\dfrac{8/50}{16/50}=\mathbf{0.5000}\).
(4) \(P(X\ge15)=(15+16)/50=\mathbf{0.6200}\).
(5) \(P(Y\ge30)=(10+11)/50=\mathbf{0.4200}\).
(6) Independence check: Left \(=8/50=0.1600\). Right \(=(16/50)(11/50)=0.0704\) ⇒ Not independent.

Q3 • Correlation & Variance (Study vs Sleep, 5 pairs)

Day12345
X (study)3.54.05.06.06.5
Y (sleep)7.87.26.55.95.4
  1. Compute \(\bar X\) and \(\bar Y\).
  2. Compute \(s_X^2\) and \(s_Y^2\) (sample variances).
  3. Compute the sample covariance \(s_{{XY}}\).
  4. Compute Pearson \(r=s_{{XY}}/(s_X s_Y)\).
  5. Interpret the correlation (strength, direction, practical meaning).
Show Solutions
Means: \(\bar X=5.000,\; \bar Y=6.560\).
Variances: \(s_X^2=1.625,\; s_Y^2=0.933\).
Covariance: \(s_{{XY}}=-1.225\).
Correlation: \(r=-0.995\) (strong negative).
Interpretation: As study time increases, sleep decreases nearly linearly in this sample; near −1 indicates a very tight inverse association (not causation).

End.