| Concept | Excel Function | Purpose | 
|---|---|---|
| Slope | =SLOPE(y_range, x_range) | Estimate β₁ | 
| Intercept | =INTERCEPT(y_range, x_range) | Estimate β₀ | 
| R-squared | =RSQ(y_range, x_range) | Model fit | 
| Predicted Y | =FORECAST.LINEAR(x, known_ys, known_xs) | Estimate ŷ | 
| Residual | =actual_y - predicted_y | Deviation from line | 
| Concept | Excel Function | Purpose | 
|---|---|---|
| Sample size | =COUNT(x_range) | n | 
| t-value | =(slope - 0) / se | t-test of β₁ | 
| P-value | =T.DIST.2T(ABS(t_stat), df) | Significance | 
| Critical t | =T.INV.2T(α, df) | Compare to t | 
=NORM.S.INV(RANK.AVG()/n) for normal plot| Concept | Excel Function | Purpose | 
|---|---|---|
| Correlation (r) | =CORREL(x_range, y_range) | Strength of linear relationship | 
| Covariance | =COVARIANCE.S(x_range, y_range) | Linear co-movement | 
=LN(x)=SQRT(x)=1/xThen re-run regression using transformed data.
=1/(1+EXP(-(b0 + b1*x)))=EXP(b0 + b1*x)=LN(odds)