📊 Chapter 11: Regression & Correlation – Excel Function Guide

📉 1. Simple Linear Regression

ConceptExcel FunctionPurpose
Slope=SLOPE(y_range, x_range)Estimate β₁
Intercept=INTERCEPT(y_range, x_range)Estimate β₀
R-squared=RSQ(y_range, x_range)Model fit
Predicted Y=FORECAST.LINEAR(x, known_ys, known_xs)Estimate ŷ
Residual=actual_y - predicted_yDeviation from line

🧪 2. Hypothesis Test for Slope

ConceptExcel FunctionPurpose
Sample size=COUNT(x_range)n
t-value=(slope - 0) / set-test of β₁
P-value=T.DIST.2T(ABS(t_stat), df)Significance
Critical t=T.INV.2T(α, df)Compare to t

🎯 3. Confidence & Prediction Intervals

📈 4. Residual Plot and Adequacy

🔗 5. Correlation & Covariance

ConceptExcel FunctionPurpose
Correlation (r)=CORREL(x_range, y_range)Strength of linear relationship
Covariance=COVARIANCE.S(x_range, y_range)Linear co-movement

🔄 6. Variable Transformation

Then re-run regression using transformed data.

🧮 7. Logistic Regression Model (Basic)

📊 8. Bonus: Excel’s Built-In Tool